Abstract
We discuss the macroscopic quantum tunneling from the black hole to the white hole of the same mass. Previous calculations in [G. E. Volovik, Universe 6, 133 (2020)] demonstrated that the probability of the tunneling is [Formula: see text], where [Formula: see text] is the entropy of the Schwarzschild black hole. This in particular suggests that the entropy of the white hole is with minus sign the entropy of the black hole, [Formula: see text]. Here, we use a different way of calculations. We consider three different types of the hole objects: black hole, white hole and the fully static intermediate state. The probability of tunneling transitions between these three states is found using singularities in the coordinate transformations between these objects. The black and white holes are described by the Painleve–Gullstrand coordinates with opposite shift vectors, while the intermediate state is described by the static Schwarzschild coordinates. The singularities in the coordinate transformations lead to the imaginary part in the action, which determines the tunneling exponent. For the white hole the same negative entropy is obtained, while the intermediate state — the fully static hole — has zero entropy. This procedure is extended to the Reissner–Nordström black hole and to its white and static partners, and also to the entropy and temperature of the de Sitter Universe.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.