Abstract

Insolubility is a crucial issue in drug design because insoluble compounds are often measured to be inactive although they might be active if they were soluble. We provide and analyze various insolubility classification models based on a recently published data set and compounds measured in-house at Boehringer-Ingelheim. The 2D descriptor sets from pharmacophore fingerprints and MOE and the 3D descriptor sets from ParaSurf and VolSurf were examined in conjunction with support vector machines, Bayesian regularized neural networks, and random forests. We introduce a classifier-fusion strategy, called metaclassifier, which improves upon the best single prediction and at the same time avoids descriptor selection, a potential source of overfitting. The metaclassifier strategy is compared to the simpler fusion strategies of maximum vote and highest probability picking. A prediction accuracy of 72.6% on a three class model is achieved with the metaclassifier, with nearly perfect separation of soluble and insoluble compounds and prediction as good as our calculated maximum possible agreement with experiment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.