Abstract

Global surface temperature changes and their drivers during the Holocene Epoch remain controversial. Syntheses of proxy data indicate that global mean annual temperature declined from the mid-Holocene until the Pre-industrial Era, a trend linked to decreasing Northern Hemisphere summer insolation. In contrast, global climate models simulate increasing mean annual temperatures driven by retreating ice sheets and increasing greenhouse gas concentrations. This proxy-model disagreement may originate from a warm season bias in Northern Hemisphere proxy reconstructions, highlighting the need for new proxies that quantify cold season temperature, especially in Arctic regions that were devoid of continental ice sheets during the Holocene. Here, we present a new 16,000-year winter-spring temperature reconstruction derived from the unsaturation ratio of alkenones (U37K) in a continuous sedimentary sequence from Lake E5, northern Alaska. We employ a thermodynamic lake model to convert alkenone-inferred lake temperatures into winter-spring air temperature anomalies and we contextualize our proxy reconstruction with climate model output from the region. Our reconstruction shows that winter-spring temperatures warmed rapidly during the deglaciation at 16 and 14 thousand years before present and continued to warm gradually throughout the middle and late Holocene (0.12–0.28 °C/thousand years) in concert with regional sea surface temperature and sea ice records. Our results are consistent with climate model simulations and we attribute Holocene warming to rising winter-spring insolation, radiative forcing from rising greenhouse gas concentrations and regional feedbacks. Our reconstructed cold season warming equaled or exceeded summer cooling according to a regional synthesis of temperature records, suggesting that seasonal biases in temperature reconstructions may account for proxy-model disagreements in Holocene temperature trends from Eastern Beringia.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.