Abstract
A novel nanohybrid material composed of vanadium pentoxide nanofibres (VNFs) and exfoliated graphene were prepared by in-situ growth of VNFs onto graphene nanosheets, and explicated as electrode material for supercapacitor applications. The existence of non-covalent interactions between VNFs and graphene surfaces was confirmed by Raman and Fourier transform infrared (FTIR) spectroscopes. Morphological analysis of the nanohybrid revealed that the VNF layer uniformly grown on the graphene surfaces, producing high specific surface area and good electronic or ionic conducing path. High crystalline structure with small d-spacing of the VNFs on graphene was observed in X-ray diffraction (XRD) analysis. Compared to pristine VNF, the VNF/graphene nanohybrid exhibited higher specific capacitance of 218 F gā1 at current density of 1 A gā1, higher energy density of 22 Wh kgā1 and power density of 3594 W kgā1. Asymmetric supercapacitor devices were prepared using the Spectracarb 2225 activated carbon cloth and VNF/graphene nanohybrid as positive and negative electrode, respectively. The asymmetric device exhibited capacitance of 279 F gā1 at 1 A gā1, energy density of 37.2 Wh kgā1 and power density of 3743 W kgā1, which are comparable and or superior to reported asymmetric devices consisting of carbon material and metal oxide as electrode components.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.