Abstract

Spinel-based nanostructured materials are commonly used as promising electrode materials for supercapacitor applications. The combination of heteroatom-doped carbon material with spinel oxides substantially improves the specific capacitance and cyclic stability. In this work, dopamine-derived nitrogen-doped carbon was coated on spinel phase MnCo2O4 nanospheres using simple solvothermal and calcination methods. Surface morphology and the crystalline structure of the prepared MnCo2O4@Nitrogen-doped carbon were confirmed by FESEM and X-ray diffraction. The electrochemical performance of MnCo2O4@Nitrogen-doped carbon electrode material was analyzed by cyclic voltammetry, galvanostatic charge–discharge, and electrochemical impedance spectroscopy techniques. MnCo2O4@nitrogen-doped carbon exhibits the highest specific capacitance of 1200 F/g compared to MnCo2O4 spheres are 726 F/g at 1 A/g and exhibits excellent cyclic stability (capacitance retention of 87% at 7 A/g after 3000 cycles). The enhanced performance of the composite might be benefitted from the synergistic effect between nitrogen-doped carbon on porous MnCo2O4 spheres. Furthermore, an asymmetric supercapacitor device was fabricated by using the optimized composition of MnCo2O4@NC-2 as a positive electrode and nitrogen, sulfur-doped reduced graphene oxide (NS-rGO) as a negative electrode, respectively. This asymmetric supercapacitor device achieves a maximum energy density of 61.0 Wh/kg at a power density of 2889 W/kg and possesses excellent capacitance retention of 95% after 5000 cycles at 7 A/g.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.