Abstract

A robust, accurate and fast in-situ sensor was developed for detection of water vapor partial pressure and temperature simultaneously at the anode and cathode channels of a PEM fuel cell. Tunable diode laser absorption spectroscopy (TDLAS) utilizing wavelength modulation (WMS) was employed for these measurements. This method determines the ratio of the second and first harmonics (2f/1f) of the spectroscopic absorption profile of water vapor by the aid of a software lock-in amplifier. Measurements were taken using a diode laser emitting around a wavelength of 1471 nm where the water vapor absorption exhibits significant sensitivity to partial pressure and temperature. Measurements of water vapor concentration and temperature in were taken at steady and dynamic operating conditions in the anode and cathode gas channels near the inlet and outlet ports of a serpentine channel PEM fuel cell with Nafion membrane of active area 50 cm2. Different load and inlet humidity conditions were tested to characterize the operation at different conditions. The partial pressure of water vapor increases towards the exit of both the gas channels, but the increase is found to be more significant on the cathode side. The dynamic operation of the fuel cell was also examined in this study as well as the simultaneous measurements at the anode and cathode gas channels.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call