Abstract

A fast in situ sensor was developed for detection of water vapor partial pressure and temperature simultaneously in the flow channels of a proton exchange membrane (PEM) fuel cell. Utilizing tunable diode laser absorption spectroscopy with wavelength modulation, this technique determined the ratio of harmonic signals of spectral absorption using a software lock-in amplifier. A curve-fitting analysis ensured errors less than in water partial pressure and in gas temperature. Measurements were taken at steady and dynamic operating conditions in a serpentine channel prototypical PEM fuel cell while simultaneously sampling the anode and cathode gas channels near the inlet and outlet ports. External load and inlet humidity conditions were varied. With increasing current density, water vapor concentration increased toward both outlets, but the increase was more prominent on the cathode side. The temporal variation in water vapor during dynamic operation of the fuel cell was examined with a time resolution of . For sudden external load changes, transients in water concentration were observed near the anode outlet due to the increase in electro-osmotic drag through the membrane. This dynamic water transport was observed and can be used to characterize the step response of the cell to external changes in current.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.