Abstract

In this paper, a simple and green modification method is developed for biomolecules analysis on poly(dimethylsiloxane) (PDMS) microchip with successful depression of nonspecific biomolecules adsorption. O-[( N-succinimdyl)succiny]- o’-methyl-poly(ethylene glycol) was explored to form hydrophilic surface via in-situ grafting onto pre-coated chitosan (Chit) from aqueous solution in the PDMS microchannel. The polysaccharide chains backbone of Chit was strongly attracted onto the surface of PDMS via hydrophobic interaction combined with hydrogen bonding in an alkaline medium. The methyl-poly(ethylene glycol) (mPEG) could produce hydrophilic domains on the mPEG/aqueous interface, which generated brush-like coating in this way and revealed perfect resistance to nonspecific adsorption of biomolecules. This strategy could greatly improve separation efficiency and reproducibility of biomolecules. Amino acids and proteins could be efficiently separated and successfully detected on the coated microchip coupled with end-channel amperometric detection at a copper electrode. In addition, it offered an effective means for preparing biocompatible and hydrophilic surface on microfluidic devices, which may have potential use in the biological analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.