Abstract
The interest in magnesium and its alloys considerably increases in recent years. These materials have a unique complex of properties: light-weight and strength make magnesium alloys promising structural materials for the aircraft industry and space application, and ability to reabsorb in vivo conditions and good biocompatibility allow producing biodegradable surgical implants of magnesium alloys, which can resorb in a human body without detriment to health. The materials for such demanding applications require detailed investigation of their properties, such as corrosion, including the kinetics of corrosion rate and staging of corrosion damage on the surface. To obtain a full view of the corrosion process, in addition to common ex-situ methods such as the corrosion rate evaluating using the weight loss method and the morphology corrosion damage investigation by optical or confocal laser scanning microscopy (CLSM), it is important to use modern in-situ methods. In-situ methods allow obtaining data immediately during the experiment and not after its completion. The authors carried out a comprehensive study of the corrosion process of the commercial ZK60 and AZ31 magnesium alloys in the simulated human-body environment (temperature, corrosion media composition, circulation of corrosion media) using in-situ methods, including hydrogen evolution corrosion rate evaluating and video-observation of a sample surface. The results show that AZ31 alloy is more corrosion-resistant than ZK60 alloy. Moreover, AZ31 alloy is prone to filiform surface corrosion, and ZK60 alloy exhibits severe pitting corrosion. Based on the comparison of the data obtained by in-situ and ex-situ methods, the authors concluded on their main differences and features.
Highlights
The results show that AZ31 alloy is more corrosion-resistant than ZK60 alloy
Biomedical Magnesium Alloys: A Review of Material Properties, Surface Modifications and Potential as a Biodegradable Orthopaedic Implant // American Journal of Biomedical Engineering
Summary
Материалами исследования послужили магниевые сплавы ZK60 и AZ31, химический состав которых приведен в таблице 1. Из указанных сплавов были изготовлены прямоугольные образцы 15×10×3 мм с отверстием диаметром 1,5 мм. Вырезка образцов ZK60 велась из середины прутка поперек направления экструзии, образцы AZ31 были вырезаны поперек прокатки. Все образцы были предварительно отшлифованы на наждачной бумаге #2500, промыты в этаноле с применением ультразвуковой ванны, высушены потоком холодного воздуха и взвешены на аналитических весах с точностью 0,0001 г. По сути, медицинский физиологический раствор для инфузий и используется для коррозионных испытаний биорезорбируемых сплавов [16]. Напечатанной на 3D-принтере из полиэтилена (PETG), образец подвешивался при помощи нити из стекловолокна, над ним располагались воронка для сбора выделяющегося водорода и мерная бюретка для оценки его объема. За коррозионной ячейкой располагалась камера Eakins с разрешением 38 МП и длиннофокусным объективом с увеличением ×5–×100 для видеомониторинга поверхности образца.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Vektor nauki Tol'yattinskogo gosudarstvennogo universiteta
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.