Abstract

The composition of magnesium alloys is greatly associated with initial deposition behavior of electroless Ni–P coatings. Thus, the initial deposition behavior of electroless Ni–P coatings on ZK60 and ME20 alloys was investigated. The results indicated that differences in the alloy compositions significantly influenced the initial deposition process and the adhesive strength, corrosion resistance, and crystal structure. The initial deposition of coatings on ZK60 and ME20 alloys preferentially occurred on the precipitates. The precipitates in ZK60 alloy had higher chemical activity after HF activation and controlled the initial deposition rate of the coating. The initial deposition rate of the coating on ME20 alloy mainly depended on the density of the MgF2 film formed by HF activation rather than on the precipitates. Owing to differences in the initial deposition process, the coating on ZK60 alloy had higher adhesive strength and better corrosion resistance than that on ME20 alloy. The coatings on ZK60 and ME20 alloys mainly had crystalline structures, and the coating on ME20 alloy had also a slight microcrystalline structure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call