Abstract
This study explored the legacy impact of Zinc plant residues (ZPRs) in Kabwe, Zambia, on the environment and human health, particularly in light of the town's reputation for Pb pollution. ZPRs solid samples and groundwater within and around ZPRs zone were collected from the legacy mine, along with soils in a 10km radius from the mine site. Bioaccessible fractions of Pb and Zn were elucidated by Japanese leaching test (JLT) and simple bioaccessibility extraction test (SBET). Cationic speciation of Pb and Zn from inhalable and ingestible ZPRs particles was investigated via sequential extraction. Groundwater in the ZPRs area showed higher Zn levels (1490mg/L) compared to Pb (1.7mg/L). Elevated Zn concentration were facilitated by the presence of soluble Zn sulfates while Pb was constrained due to its precipitation as anglesite. Groundwater sampled outside the ZPRs area was within the Zambia regulatory limits (< 0.5mg/L for Pb and < 1mg/L for Zn). Inhalation exposure to < 30µm dust particles from ZPRs and soils near the mine indicated negligible risk, with < 3% of bioaccessible Pb in artificial lysosomal fluid. Meanwhile, oral intake of ZPRs particles < 250µm revealed elevated bioaccessible fractions (36% for Pb and 70% for Zn). ZPRs cationic speciation of ingestible particles < 30µm, 30-75µm, 75-150µm and 150-250µm indicated that the bioaccessible Pb predominantly emanated from labile Pb fractions under gastric conditions with pH < 1. This was due to the dissolution of Pb associated with the exchangeable phase, carbonates and iron/manganese oxides; however, only exchangeable/carbonate Pb was bioaccessible at pH < 2. Hazard quotients indicated increased risks of Pb intoxication through the ingestion of ZPRs and soils near the legacy mine, with higher risks observed in children, emphasizing the need to remediate legacy mine wastes to reduce health risks and protect groundwater through monitoring in mining-affected regions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.