Abstract

The mechanical properties of polymer nanocomposites (PNCs) depend sensitively on the structure (e.g., orientation, dispersion, and so on) of the incorporated nanofillers. Many studies have shown that the alignment of anisotropic nanofillers can improve the mechanical properties of PNCs. However, achieving this alignment typically requires complex preparation processes. To address this challenge, researchers have introduced dynamic covalent bonds to form reversible cross-linked polymer systems, which would lead to unique properties, such as self-healing, recyclability, and reprocessibility. In addition, inspired by the above ideas, we introduce nanorods as fillers into a linear vitrimer system to form nanorod vitrimer composites (NVCs). In NVCs, we can easily manipulate the alignment of the nanorods due to bond exchange reactions (BERs) in the vitrimer matrices. By using coarse-grained molecular dynamics (CGMD) simulations, we systematically investigate the factors affecting the nanorod orientation in NVCs. We find that the main factor affecting the nanorod orientation is the network rearrangement caused by BERs. Specifically, the BER potential barrier (ΔEsw) directly determines the probability of BERs’ occurrence. At the same time, the increase of the interfacial interaction between polymer chains and nanorods (εnp) confines the motion of the active beads, which slows down the rate of BERs. Additionally, the impact of temperature (T) and aspect ratio (ld) on the orientation of nanorods during uniaxial stretching or stress relaxation are also discussed. Finally, by combining uniaxial stretching and stress relaxation processes, we elucidate the orientation retention mechanism of NVCs and demonstrate the mechanical property enhancement phenomenon of the pre-oriented NVC systems. This work provides a simple strategy for manipulating the nanorod alignment in vitrimer matrices and uncovers guidelines for designing new functional polymer vitrimer nanocomposites at the molecular level.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call