Abstract
Propelled by enormous increase in demand for fuel sources, Canadian oil sands are becoming increasingly important as a fuel source due to their abundance and upgrading capability. However, extraction of bitumen, a high acid crude (HAC) oil, requires 2–3 units of water per unit of oil resulting in naphthenic acid (NA)-rich oil sands process affected water (OSPW) collected in effluent ponds. This study illustrates the role of sonochemistry in the accelerated degradation through H-abstraction and subsequent decarboxylation of aromatic and alicyclic naphthenic acid model compounds. Benzoic acid and 3-methylcyclohexane carboxylic acid were selected as model NA compounds to investigate the mechanism of hydroxyl radical (OH•) initiated carboxylic acid degradation in 378 KHz sonochemical reactor. Established FTIR methods with low resolution LCMS spectroscopy confirmation were applied to determine the extent of carboxylic acid degradation and identify the formation of products. FTIR monitoring showed a non-linear degradation of carboxylic acids with formation of many intermediates highlighting the shift from cyclic carboxylic acids to cyclic alcohols during BA degradation. Subsequent decrease in carboxylic acid groups signifies scission of cyclic structures before complete mineralization. This is confirmed with the LCMS identification of products such as: 3-hydroxybenzoic acid and phenol. This study postulated new breakdown pathways for degradation of benzoic acid with complete mineralization at a sonochemical reaction time (SRT) of 4 h. A radical quenching process was also inferred through the formation of conglomerates during sonochemical degradation of BA. Extension of the study to 3-methylcyclohexane carboxylic acid (3mCHA) shows similar non-linearity with an increase in carboxylic acid groups indicating H-abstraction followed by ring-opened compounds. However, due to the complex nature of 3mCHA’s ring-opened compounds, complete mineralization is not achieved. The putative role of sonochemistry is a promising and sustainable degradation method for mitigating NAs in OSPW, but sonication periods need to be considered carefully to ensure adequate mineralization of their constituents and combinatorial methods with other advanced oxidation methods may be needed to enhance industrial application.In Part II, an in silico screening approach using first principles is reported to identify the breakdown of the organic compounds and determine molecular rates of reaction to confirm the mechanistic origins of the compounds formed.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have