Abstract

This study demonstrates the effect of (co)intercalated anion compositions on nanostructure evolution to understand the formation mechanisms of layered double hydroxide (LDH) nanoparticles following coprecipitation and hydrothermal treatments (HT). Initially, the room temperature coprecipitation resulted in amorphous primary nanoparticles that agglomerated at the edges due to low surface charge densities. The reversibility of such agglomeration was determined by the crystalline quality upon HT and consequent surface charge density, which in turn were strongly influenced by the composition of the intercalated anions. Upon crystallization, the agglomerated Zn2Al(OH)6(NO3)0.3(CO3)0.35⋅xH2O primary nanoparticles re-dispersed, but the Zn2Al(OH)6(NO3)⋅xH2O nanoparticles with much lower stability and higher disorder (especially at the edges) exhibited irreversible agglomeration, and transformed into secondary nanoparticles via aggregational growth. Additionally, the stability studies on Zn2Al(OH)6(NO3)y(CO3)0.5(1−y)⋅xH2O nanoparticles (y=0–1) showed that the size difference between the cointercalated anions caused phase separation when 0.9⩾y⩾0.6, leading to bimodal size distributions. Moreover, the coarsening rates were controlled through the cointercalated anion compositions. By gradually varying the ratio of cointercalated NO3− to CO32−, monodispersed Zn2Al(OH)6(NO3)y(CO3)0.5(1−y)⋅xH2O (0.5⩾y⩾0) nanoparticles with systematic variation in the particle size of ∼200–400nm were obtained after HT at 85°C for 12h.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.