Abstract

Oat rice kernels were subjected to decortication (DOR), decortication and enzyme deactivation (DDOR), decortication and cooking (DCOR), as well as combined decortication, enzyme deactivation and cooking (DDCOR). The starch fractions were isolated and their structural features were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, solid-state 13C nuclear magnetic resonance, small angle X-ray scattering (SAXS), and scanning electron microscope. In the cooked oat rice samples (DCOR and DDCOR), in addition to losing a significant amount of the A-type crystalline structure, there was an enhancement in the proportion of V-type crystallinity. The cooking process completely destroyed the periodic lamellar structure of oat starch on the SAXS profile. The Mw values (1.195 × 107–1.459 × 107 g/mol) were in the following order: DOR > DDOR > DCOR > DDCOR. The data was in line with the results for crystallinity, double helix content, degree of order, melting enthalpy, and those obtained for textural parameters, resistant starch content, and bile acid binding capacity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.