Abstract
Pine wilt disease (PWD) is a complex disease that severely affects the biodiversity and economy of Eurasian coniferous forests. Three factors are described as the main elements of the disease: the pinewood nematode (PWN) Bursaphelenchus xylophilus, the insect-vector Monochamus spp., and the host tree, mainly Pinus spp. Nonetheless, other microbial interactors have also been considered. The study of mycoflora in PWD dates back the late seventies. Culturomic studies have revealed diverse fungal communities associated with all PWD key players, composed frequently of saprophytic fungi (i.e., Aspergillus, Fusarium, Trichoderma) but also of necrotrophic pathogens associated with bark beetles, such as ophiostomatoid or blue-stain fungi. In particular, the ophiostomatoid fungi often recovered from wilted pine trees or insect pupal chambers/tunnels, are considered crucial for nematode multiplication and distribution in the host tree. Naturally occurring mycoflora, reported as possible biocontrol agents of the nematode, are also discussed in this review. This review discloses the contrasting effects of fungal communities in PWD and highlights promising fungal species as sources of PWD biocontrol in the framework of sustainable pest management actions.
Highlights
While the description of microbial diversity has been established for the pinewood nematode (PWN), the insect-vector, and susceptible pine hosts—leading to the preliminary proposal of their functional roles in the Pine wilt disease (PWD)—information on the mycological diversity associated with these organisms is scarcer
Once infection occurs in a susceptible tree, the PWN quickly multiplies and begins feeding on the epithelial parenchyma cells lining the pine resin ducts, inducing extensive damage that leads to a reduction in resin production and the release of volatile terpenoids
Most of the described taxa are common saprophytes and probably not specific to the disease or associated with the PWN. This may be the case of Penicillium (Ascomycota, Eurotiomycetes, Trichocomaceae), Trichoderma (Ascomycota, Sordariomycetes, Hypocreaceae) and Aspergillus (Ascomycota, Eurotiomycetes, Aspergillaceae) among others, which are ubiquitous to all existing environments and detected in all PWD elements (Table 1)
Summary
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. Effective PWD management strategies have been difficult to achieve given the complex disease infection cycle, where several organisms contribute to the infection’s overall development and severity, namely its causal agent, the pinewood nematode (PWN) Bursaphelenchus xylophilus (Steiner & Bührer) Nickle; the PWN’s insect-vector Monochamus spp.; and a susceptible host tree, commonly trees from the genus Pinus [1]. While the description of microbial diversity has been established for the PWN, the insect-vector, and susceptible pine hosts—leading to the preliminary proposal of their functional roles in the PWD—information on the mycological diversity associated with these organisms is scarcer. An up-to-date compilation of the published works reporting on naturally occurring fungi associated with the PWN, the host tree, and its insect-vector, is presented. A critical analysis of the summarized information further allows us to envision the functional role of associated fungi on PWD development and guide future research in this area
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.