Abstract

The negative effects of ubiquitous microplastics on wastewater treatment have attracted increasing attention. However, the potential impacts of microplastics on anaerobic granular sludge (AGS) remain unknown. To fill this knowledge gap, this paper investigated the response of AGS to the exposure of model microplastics (polyethylene terephthalate (PET-MPs)) and provided insights into the mechanisms involved. The 84 days’ long-term exposure experiments demonstrated that PET-MPs, at relatively low level (15 MP L−1) did not affect AGS performance during anaerobic wastewater treatment, while 75–300 MP L−1 of PET-MPs caused the decreases of COD removal efficiency and methane yields by 17.4–30.4% and 17.2–28.4%, accompanied with the 119.4–227.8% increase in short-chain fatty acid (SCFA) accumulation and particle breakage. Extracellular polymeric substances (EPS) analysis showed that dosage-dependent tolerance of AGS to PET-MPs was attributed to the induced EPS producing protection role, but PET-MPs at higher concentrations (75–300 MP L−1) suppressed EPS generation. Correspondingly, microbial community analysis revealed that the populations of key acidogens (e.g., Levilinea sp.) and methanogens (e.g., Methanosaeta sp.) decreased after long-term exposure to PET-MPs. Assessment of the toxicity of PET-MPs revealed that the leached di-n-butyl phthalate (DBP) and the induced reactive oxygen species (ROS) by PET-MPs were causing toxicity towards AGS, confirmed by the increases in cell mortality and lactate dehydrogenase (LDH) release. These results provide novel insights into the ecological risk assessment of microplastics in anaerobic wastewater treatment system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.