Abstract
This research was performed to evaluate the efficiency of ultrasound in obtaining the total extract, caffeic acid and rosmarinic acid from Perilla frutescens using supercritical CO2 (USCCO2) extraction. Compared with traditional heat-reflux, ultrasonic-assisted and SCCO2 extractions, the USCCO2 technique decreased the extraction duration (1.12–1.92 times) and the consumption of solvent (1.90–285.71 times) at lower extraction temperatures and obtained a higher yield from the plant matrix. Furthermore, a second-order kinetic model and Fick’s second diffusion model were implemented to ascertain the extraction rate constant, equilibrium concentration, initial extraction rate, effective diffusion coefficient, mass transfer coefficient, Biot number, equilibrium constant and thermodynamic parameters of the USCCO2 and SCCO2 dynamic extractions of rosmarinic acid from P. frutescens. These results provide valuable insights into the kinetic and mass transfer behaviors that occur during the USCCO2 and SCCO2 procedures and explain the reasons for the better extraction efficiency of the former procedure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.