Abstract

Persulfate/Fe2+-based advanced oxidation processes are widely used to treat water contaminated with 2,4-dinitrotoluene (DNT). However, the oxidation of DNT by persulfate/Fe2+ in the presence of the chloride ion (Cl⁻) has not been addressed, and the transformation pathways and toxicities of the intermediate products remain unclear. In this study, the effect of different Cl⁻ concentrations on the oxidation of DNT was investigated by persulfate/Fe2+. After the addition of 1.0 mM Cl⁻ and 6 h of oxidation, the removal efficiency of DNT increased by 68.5%. Scavenging experiments and an electron spin resonance analysis suggested that Cl⁻ caused hydroxyl radicals to increase in content in the persulfate/Fe2+ system, thus promoting the removal of DNT. Eight intermediate products of DNT were accurately detected using high-resolution mass spectrometry, and the transformation pathways of DNT were proposed, including hydroxylation/oxidation, elimination of the nitro group, and chlorination process. The acute and chronic toxicities of the intermediate products decreased during the oxidation process, but chlorinated by-products posed a higher toxicological risk. This result is vital for the practical application and environmental safety evaluation of persulfate/Fe2+-based advanced oxidation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.