Abstract

The chemical and isotopic pattern of the zoned carbonate globules in the ALH 84001 meteorite reveals a unique aqueous environment on early Mars. If the evolution of the fluid composition was dictated primarily by carbonate precipitation, the zoning pattern of the carbonates can constrain the fluid to have had an Mg/Ca mole ratio > ~5.3 and a Fe/Ca mole ratio > ~1 prior to the formation of the carbonates. Chemical equilibrium modeling of water–rock interactions indicates that low temperatures and low pH favor the formation of an aqueous solution with elevated Mg and Fe concentrations. The modeling shows that a sufficiently Fe- and Mg-rich fluid could have formed through low-temperature (< 100 °C) subsurface aqueous alteration of an ALH 84001-type rock at pH 5–7. This range of pH corresponds to an elevated CO 2 fugacity (~ 0.1–1 bar). Formation of ALH 84001 carbonates could have been driven by degassing of CO 2 and corresponding pH increase in near-surface environments during an upwelling of subsurface CO 2-rich solutions. This scenario is consistent with the unaltered nature of the ALH 84001 rock and with chemical and isotopic composition of its carbonates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.