Abstract

Soil redox potential (Eh) plays an important role in the biogeochemical cycling of soil nutrients. Whereas its effect soil process and nutrients’ availability under elevated atmospheric CO2 concentration and warming has seldom been investigated. Thus, in this study, a field experiment was used to elucidate the effect of elevated CO2 concentration and warming on soil Eh, redox-sensitive elements and root radial oxygen loss (ROL). We hypothesized elevated CO2 and warming could alter soil Eh by promoting or inhibiting ROL. We found that soil Eh in the rhizosphere was significantly higher than that of non-rhizosphere. Elevated CO2 enhanced soil Eh by 11.5%, which corresponded to a significant decrease in soil Fe2+ and Mn2+concentration. Under elevated CO2, the concentration of Fe2+ and Mn2+ decreased by 14.7% and 13.7%, respectively. We also found that elevated CO2 altered rice root aerenchyma structure and promoted rice root ROL. Under elevated CO2, rice root ROL increased by 79.5% and 112.2% for Yangdao 6 and Changyou 5, respectively. Warming had no effect on soil Eh and rice root ROL. While warming increased the concentration of Mn2+ and SO42− by 4.9% and 19.3%, respectively. There was a significant interaction between elevated CO2 and warming on Fe2+ and Mn2+. Under elevated CO2, warming had no effect on the concentration of Fe2+ but decreased Mn2+ concentration significantly. Our study demonstrated that elevated atmospheric CO2 in the future could increase soil Eh by promoting rice root ROL, which will alter some soil nutrients’ availability, such as Fe2+ and Mn2+.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.