Abstract
Layered double hydroxide (LDH) material with abundant OH was successfully prepared by co-precipitation method, and a water purification system of Ni2Fe0.25Al0.75-LDH activated peroxymonosulfate (PMS) was constructed to rapidly degrade sulfamethoxazole (SMX) pollutants. The optimal conditions for the degradation of SMX in the system were as follows: 0.30 g/L Ni2Fe0.25Al0.75-LDH, 0.30 mM PMS, pH = 7 and 90 % SMX was removed in 10 min and almost completely in 40 min, which was consistent with the predicted results of response surface methodology (RSM) analysis. The abundant OH in Ni2Fe0.25Al0.75-LDH could form M(O)OSO3 complexes with PMS, accelerating the generation of reactive oxygen species (ROS) and promoting the removal of SMX. Quenching experiments and electron paramagnetic resonance (EPR) spectra showed that SO4−, OH, O2− and 1O2 also existed in the system. The surface-bound SO4− and O2− contributed greatly to the removal of SMX and the electron transfer between metals was also conducive to the production of active substances. The possible degradation pathways and intermediates of SMX were proposed. The toxicity assessment software tool (T.E.S.T) and total organic carbon (TOC) results indicated that the Ni2Fe0.25Al0.75-LDH/PMS system could reduce the overall environmental risk of SMX to some extent. This study provided a new strategy for the practical application of heterogeneous catalysts in sewage treatment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.