Abstract

Despite recent interest in the low-temperature carbonization of coal to prepare disordered carbon materials for the anodes of lithium-ion (LIBs) and sodium-ion batteries (SIBs), the carbonization mechanism is still poorly understood. We selected bituminous coal as the raw material and investigated the chemical, microcrystal, and pore structure changes during the carbonization process from coal to the resulting disordered carbon. These structural changes with temperature below 1 000 °C show an increase in both interlayer spacing (3.69–3.82 Å) and defect concentration (1.26–1.90), accompanied by the generation of a large amount of nano-microporous materials. These changes are attributed to the migration of the local carbon layer and the release of small molecules. Furthermore, a decrease in interlayer spacing and defect concentration occurs between1 000 °C and 1 600 °C. In LIBs, samples carbonized at 1 000 °C showed the best electrochemical performance, with a reversible capacity of 384 mAh g−1 at 0.1 C and excellent rate performance, maintaining 170 mAh g−1 at 5 C. In SIBs, samples carbonized at 1 200 °C had a reversible capacity of 270.1 mAh g−1 at 0.1 C and a high initial Coulombic efficiency of 86.8%. This study offers theoretical support for refining the preparation of carbon materials derived from coal.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.