Abstract

Abstract Background Chlorophenoxy compounds represent a group of selective herbicides widely used around the world. Chlorophenoxy herbicides are toxic, chemically stable, and can migrate into groundwater through soil leaching, posing a significant threat to drinking water safety and human health. Chlorophenoxy herbicides in groundwater aquifers are subject to anaerobic processes; however, the pathway and microbiology involved in the attenuation of chlorophenoxy herbicides under anaerobic condition are largely unknown. Here, the anaerobic degradation process of 2,4,5-trichlorophenoxyacetic acid (2,4,5-T), a typical chlorophenoxy herbicide, was investigated. Results The initial 52.5 ± 2.3 μM 2,4,5-T was completely degraded by a sediment-derived microbial consortium, with 3,4-dichlorophenol, 2,5-dichlorophenol, 3-chlorophenol (3-CP) and phenol being identified as the intermediate products. Reductive dechlorination of 3-CP to phenol and the subsequent elimination of phenol were the key transformation steps in the overall degradation process of 2,4,5-T. Amplicon sequencing suggested that Dehalobacter, Sulfuricurvum, Bacteroides, Acetobacterium, and Clostridium sensu stricto 7 might contribute to the transformation of 2,4,5-T to phenol, and Smithella, Syntrophorhabdus, Methanofollis and Methanosaeta likely cooperated to accomplish the complete mineralization of phenol. Conclusions This study reported the anaerobic degradation of 2,4,5-T via reductive dechlorination and the subsequent syntrophic metabolization of phenol, an intermediate product transformed from 2,4,5-T. Dehalobacter was identified as the organohalide-respiring population catalyzing the reductive dechlorination reaction. Syntrophorhabdus and methanogenic populations were likely involved in anaerobic phenol oxidation and facilitated the complete mineralization of 2,4,5-T.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.