Abstract
Aim: A laboratory finding in critically ill COVID-19 patients is blood academia (pH <7.35). We investigated its cause in connection with the admission baseline blood pH homeostasis.Patients & methods: We retrospectively monitored the baseline blood pH homeostasis of 1215 COVID-19 patients who were admitted with pneumonia using data-driven knowledge. Two categories of patients were identified: non-survivors (107) and survivors (1108).Results: Non-survivors showed greater levels of lactate and lower blood pH, saturation, and partial pressure of oxygen than survivors. A bivariate Spearman's correlation matrix showed that the [HCO3-]/pCO2 and pCO2 of non-survivors exhibited an unmatched connection, but not in the survivor group. When comparing non-survivors to survivors, the dendrograms derived from the bivariate comparison matrix showed differences in gasometry parameters like blood pH, [HCO3-]/pCO2 ratio, anion gap and pO2.Conclusion: The little variations in the gasometry readings between survivors and non-survivors upon admission suggested abnormal changes in the complementary renal and respiratory systems that bring blood pH back to normal. In advanced COVID-19, modest blood acid-base imbalances could become blood acidemia if these compensatory strategies were overused. Data-driven monitoring of acid-base parameters may help predict abnormal blood pH and the advancement of metabolic acidemia before it is too late.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have