Abstract

Directly oxidative esterification of Biomass-derived 5-hydroxymethylfurfural (HMF) into dimethyl furan dicarboxylate (DMFDCA) is a promising route for the replacement of petroleum-derived commodity chemical terephthalic acid (TPA) extensively employed in polyester synthesis. Co-based N-doped carbon materials are one of the most promising applied catalysts for oxidative esterification reaction, however, the active sites and reaction pathway of these catalysts have not been clearly clarified, which is crucial to the practical application. Herein, we report that ZIF-67 (a zeolitic imidazolate framework (ZIF)-type cobalt-containing MOF) derived Co@C-N material is a highly effective catalyst for the selective conversion of HMF into DMFDCA in 95% yield. The high activity of the ZIF-67 derived nanocarbon composites Co@C-N can be attributed to the electron transfer between nitrogen-doped carbon shells and Co nanoparticles. The appropriate graphitic N and pyridinic N doping increases the electronic mobility and active sites. Density functional theory (DFT) simulations indicated that oxygen, HMF and methanol molecules are adsorbed and activated on C-N materials. Furthermore, no 2, 5-diformylfuran (DFF) was captured as an intermediate because the oxidative esterification of aldehyde preferentially occurred than the oxidation of hydroxyl group in HMF. We anticipate that these results can drive progress in the bio-based polymers sector and oxidative esterification reaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.