Abstract

Metallocene-based olefin polymerization catalysts often require large excesses of co-catalyst for optimal catalyst activation. In this work, mechanistic insights into the activation of supported metallocenes by methylaluminoxane as co-catalyst are acquired. UV–vis diffuse reflectance (DR) spectroscopy of five metallocene catalysts with varying co-catalyst loading reveals the presence of different metallocene species on the surface of the catalyst particles. Deconvolution of the obtained spectra, in combination with an extensive TD–DFT study of UV–vis DR spectra of metallocene structures results in a proposed activation mechanism. We find that with increasing MAO loading, more AlMe2+-bound metallocenes are observed with a shift towards the trimethylaluminum-stabilized cationic methylated metallocene compound. This shift can be directly correlated with a higher activity in the olefin polymerization reaction. Based on this finding, we propose a universal metallocene activation mechanism in which the cationic methylated metallocene is the active species. This species is formed through initial interaction with AlMe2+, followed by ligand exchange with MAO and stabilized in complex with trimethylaluminum as a dormant species.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.