Abstract

In this study, a full-scale internal circulation (IC) reactor coupled with an external circulation system was developed to treat high-strength leachate from a municipal solid waste (MSW) incineration plant, in which anaerobic sludge granulation was intensively investigated. Results showed that the IC reactor achieved excellent treatment performance under high organic loading rates (OLR) of 21.06–25.16kg chemical oxygen demand (COD)/(m3∙day). The COD removal efficiency and biogas yield respectively reached 89.4%–93.4% and 0.42–0.50m3/kgCOD. The formation of extracellular polymeric substances (EPS) was closely associated with sludge granulation. Protein was the dominant component in sludge EPS, and its content was remarkably increased from 21.6 to 99.7mg/g Volatile Suspended Solid (VSS) during the reactor operation. The sludge Zeta potential and hydrophobicity positively correlated with the protein/polysaccharide ratio in EPS, and they were respectively increased from −26.2mV and 30.35% to −10.6mV and 78.67%, which was beneficial to microbial aggregation. Three-dimensional fluorescence spectroscopy (3D-EEM) and Fourier transform infrared spectroscopy (FT-IR) analysis further indicated the importance of protein-like EPS substances in the sludge granulation. Moreover, it was also found that the secondary structures of EPS proteins varied during the reactor operation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.