Abstract
Water oxidation by photosystem II (PSII) involves the release of O2, electrons, and protons at the oxygen-evolving complex (OEC). These processes are facilitated by a hydrogen-bonded network of amino acid residues and waters surrounding the OEC. It is crucial to probe the proton-transfer pathways from the OEC as proton release helps to maintain the charge balance required for efficient water oxidation. In this study, we generate point mutations in the cyanobacterium Synechocystis sp. PCC 6803 at secondary-shell amino acid residues surrounding the OEC: D2-K317, D1-S169, CP43-R357, D1-D61, and D1-N181. We employ direct experimental methods to study the O2 evolution rate under varying pH ranging from 3-8. The pH dependence follows a bell-shaped curve in both wild-type and mutated PSII from which we can derive the effective acidic pKa. The effective acidic pKa provides insights into the protonation states of the amino acid residues participating in the proton-transfer process during the rate-determining step of water oxidation. The presence of an additional effective pKa in D1-S169A PSII and D2-K317A PSII indicates the possibility of multiple proton-transfer pathways during the rate-determining step of water oxidation. We also studied the O2 evolution rate in H2O and D2O with varying pL (L = H or D) to identify the amino acid residues participating in the proton-transfer process. We find that replacing the positively charged lysine with a neutral alanine in D2-K317A PSII and aspartate with alanine in D1-D61A PSII significantly enhances the kinetic solvent isotope effect (KSIE), indicating that proton transfer becomes rate-limiting at the optimal pH in these mutated PSII. However, the KSIE remains unchanged for D1-N181A, D1-S169A, and CP43-R357K PSII. Thus, perturbing the channel defined by the D1-D61 and D2-K317 residues strongly hampers the proton-transfer mechanism, and in turn, the water oxidation reaction of PSII. Hence, our study provides a direct experimental probe to identify that the D1-D61 and D2-K317 residues participate in the proton-transfer process. These results, thereby, provide us a deeper understanding of the proton-transfer processes in the water oxidation mechanism.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.