Abstract

Sulfurospirillum multivorans, a free-living ε-proteobacterium, is among the best studied organisms capable of organohalide respiration. It is able to use several halogenated ethenes as terminal electron acceptor. In this report, the complete genome sequence of S. multivorans including a comparison with genome sequences of two related non-dehalogenating species, Sulfurospirillum deleyianum and Sulfurospirillum barnesii, is described. The 3.2 Mbp genome of S. multivorans revealed a ∼ 50 kbp gene region encoding proteins required for organohalide respiration and corrinoid cofactor biosynthesis. This region includes genes for components not detected before in organohalide-respiring organisms. A transcript analysis of genes coding for some of these proteins indicates the involvement of a putative quinol dehydrogenase in organohalide respiration. The presence of genes encoding a variety of oxidoreductases reflects the organism's metabolic versatility. This was confirmed by growth studies with different electron acceptors including perchlorate and several sulfur-containing compounds. A comparison with other ε-proteobacteria indicates horizontal acquisition of many genes in the S. multivorans genome, which might be the basis of the bacterium's catabolic flexibility.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.