Abstract
The performance of naphthalene (NAP) degradation in peroxodisulfate (PDS) and peroxymonosulfate (PMS) oxidation systems by nano zero valent iron (nZVI) combined with citric acid (CA) activation was reported in aqueous solution and soil slurry medium. The results in aqueous solution tests indicated that 98.1% and 98.9% of NAP were individually degraded in PDS/nZVI/CA and PMS/nZVI/CA systems within 2 h when the dosages of PDS, PMS, nZVI and CA were 1.0 mM, 0.1 mM, 0.2 mM and 0.1 mM, respectively. The consequences of scavenging tests and electron paramagnetic resonance detection demonstrated that HO• and SO4−• were the key factors on NAP removal. The presence of surfactants could consume ROSs and inhibit NAP removal. In addition, GC-MS was applied for the determination of NAP degradation intermediates, and three possible NAP degradation pathways were proposed in PDS oxidation process and two pathways in PMS oxidation process, respectively. The results in soil slurry medium showed that the presence of CA could promote the dissolution of soil minerals and the desorption of NAP from soil medium. 93.5% and 96.8% degradation of NAP were obtained in PDS/nZVI/CA and PMS/nZVI/CA systems within 24 h. Besides, the existence of DOM in soil could promote Fe(II)/Fe(III) cycle and NAP degradation through electron transfer. Based on the NAP degradation performance in the actual groundwater and soil medium, the above findings could provide basis and strong support for the potential application of PDS/nZVI/CA and PMS/nZVI/CA systems in the remediation of NAP contaminated sites.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.