Abstract

Heme-copper oxidase (HCO) is a class of respiratory enzymes that use a heme-copper center to catalyze O2 reduction to H2 O. While heme reduction potential (E°') of different HCO types has been found to vary >500 mV, its impact on HCO activity remains poorly understood. Here, we use a set of myoglobin-based functional HCO models to investigate the mechanism by which heme E°' modulates oxidase activity. Rapid stopped-flow kinetic measurements show that increasing heme E°' by ca. 210 mV results in increases in electron transfer (ET) rates by 30-fold, rate of O2 binding by 12-fold, O2 dissociation by 35-fold, while decreasing O2 affinity by 3-fold. Theoretical calculations reveal that E°' modulation has significant implications on electronic charge of both heme iron and O2 , resulting in increased O2 dissociation and reduced O2 affinity at high E°' values. Overall, this work suggests that fine-tuning E°' in HCOs and other heme enzymes can modulate their substrate affinity, ET rate and enzymatic activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.