Abstract

Here we present an effective nickel-catalyzed carbonylative cross-coupling for direct access to alkyl aryl ketones from readily accessible redox-activated tetrachlorophthalimide esters and aryl boronic acids. The methodology, which is run employing only 2.5 equivalents of CO and simple Ni(II) salts as the metal source, exhibits a broad substrate scope under mild condition. Furthermore, this carbonylation chemistry provides an easy switch between isotopologues for stable (13CO) and radioactive (14CO) isotope labeling, allowing its adaptation to the late-stage isotope labeling of pharmaceutically relevant compounds. Based on DFT calculations as well as experimental evidence, a catalytic cycle is proposed involving a carbon-centered radical formed via nickel(I)-induced outer-sphere decarboxylative fragmentation of the redox-active ester.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.