Abstract

In the era of burgeoning electric vehicle (EV) popularity, understanding the patterns of EV users’ behavior is imperative. This paper examines the trends in household charging sessions’ timing, duration, and energy consumption by analyzing real-world residential charging data. By leveraging the information collected from each session, a novel framework is introduced for the efficient, real-time prediction of important charging characteristics. Utilizing historical data and user-specific features, machine learning models are trained to predict the connection duration, charging duration, charging demand, and time until the next session. These models enhance the understanding of EV users’ behavior and provide practical tools for optimizing the EV charging infrastructure and effectively managing the charging demand. As the transportation sector becomes increasingly electrified, this work aims to empower stakeholders with insights and reliable models, enabling them to anticipate the localized demand and contribute to the sustainable integration of electric vehicles into the grid.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.