Abstract

One of the ultimate goals of chemical kinetic study is to understand and predict autoignition in engines. In this study, utilizing toluene primary reference fuels (TPRF) as a gasoline surrogate and a recently developed multicomponent gasoline kinetic mechanism, we have demonstrated a general approach to analyze autoignition in arbitrary spark-ignition (SI) and advanced compression ignition (ACI) engine conditions by combining thermodynamic pressure-temperature trajectory and the fuel ignition delay iso-contours. This method allows direct evaluation of controlling chemistry, potential involvement of low temperature heat release, and the dependence of autoignition to conventional fuel metrics (research and motor octane rating, i.e., RON and MON, and octane sensitivity OS = RON-MON) and engine operating conditions such as equivalence ratio, exhaust gas recirculation (EGR) ratio and engine intake conditions. Applying the analysis to the pressure-temperature trajectories of the conventional RON and MON tests, as well as those beyond RON and beyond MON, distinct roles of conventional gasoline fuel metrics and engine operating parameters are identified for all representative engine conditions. By comparing the autoignition behavior in ACI and SI engine conditions, the knowledge obtained from SI engine knock cannot be directly transferred to ACI bulk combustion phasing control in general, due to the different mixture equivalence ratios and the associated differences in reactivity and its dependence. This method could be extended to generate an auto-ignition map for arbitrary fuels and arbitrary engine trajectories, and the useful insights and overall evaluations can be used to complement conventional kinetic simulation of engine cycles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.