Abstract

The widespread promotion attempt of biodegradable plastics is considered as an effective solution to address conventional plastic pollution. However, the interaction of microplastics (MPs) easily broken down from biodegradable plastics with the coexisting pollutants in aquatic environments has gained less attention. Herein, we investigated the effects of the aging process and environmental factors on copper (Cu(II)) adsorption behavior by biodegradable polylactic acid and conventional polystyrene MPs. Results demonstrated that the aging process significantly altered physicochemical properties of both types of MPs, and PLA showed less resistance to aging. The aged polylactic acid MPs (aged-PLA) exhibited the far highest Cu(II) maximum adsorption capacity (7.13 mg/g) mainly due to its abundant oxygen-containing functional groups (OCFGs), followed by pristine polylactic acid (PLA, 6.08 mg/g), aged polystyrene (aged-PS, 0.489 mg/g) and pristine polystyrene (PS, 0.365 mg/g). The adsorption kinetics of Cu(II) on PLA MPs were controlled by film and intraparticle diffusion, while film diffusion governed the Cu(II) adsorption onto PS MPs. In addition to roles of rougher surface structure, greater surface area and pore filling, the complexation of OCFGs and electrostatic interaction were critical to the adsorption mechanism of aged-PLA and aged-PS, and cation-π interaction was associated with adsorption of aged-PS. Moreover, the adsorption capacity of Cu(II) on aged MPs gradually grew with the increasing pH from 4 to 7. Besides, humic acid significantly promoted the adsorption of Cu(II) at a low concentration (0–20 mg/L) due to the formation of binary mixtures of MPs-HA but inhibited the adsorption at a high concentration (50 mg/L) because of its competitive effect, suggesting the dual roles of humic acid in the adsorption process. Overall, our findings provide a better understanding of the adsorption behavior of metals on biodegradable MPs and emphasize their non-negligible risk as carriers of contaminant.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call