Abstract

Perlite is a volcanic glass that, under thermal treatment, expands, producing a highly porous and lightweight granular material which finds application in the construction, horticulture, insulation and other industrial sectors. Proper control of the feed properties and the expansion conditions allows the production of purpose-oriented grades, while the primary evaluation of its appropriateness for use in each sector is performed by the proper characterization of relevant physical, thermal or/and mechanical properties. However, due to its extreme fineness, low density, and friability, most of the available characterization methods either fail in testing or provide erroneous results, while for certain properties of interest, a method is still missing. As a consequence, the way towards the evaluation of the material is rife with uncertainties, while a well-defined methodology for the characterization of the critical properties is of practical importance towards the establishment of a pathway for its proper analysis and assessment. This article presents the available methodology for determining the main properties of interest, i.e., the size and density, water repellency/absorption and oil absorption, the microstructural composition, crushing and abrasion resistance and isostatic crushing strength, and also sampling and size reduction processes. The issues raised by the application of existing methods are analyzed and discussed, ending up to a proper methodology for the characterization of each property, based on the long-term experience of the Perlite Institute. The study is supplemented by updated insights on ore genesis, physicochemical properties, mineralogical composition and the expansion mechanism, as background information for the sufficient comprehension of the nature and properties of perlite.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call