Abstract
The decryption of prokaryotic genome sequences progresses rapidly and provides the scientific community with an enormous amount of information. Clostridial genome sequencing projects have been finished only recently, starting with the genome of the solvent-producing Clostridium acetobutylicum in 2001. A lot of attention has been devoted to the genomes of pathogenic clostridia. In 2002, the genome sequence of C. perfringens, the causative agent of gas gangrene, has been released. Currently in the finishing stage and prior to publication are the genomes of the foodborne botulism-causing C. botulinum and of C. difficile, the causative agent of a wide spectrum of clinical manifestations such as antibiotic-associated diarrhea. Our team sequenced the genome of neuropathogenic C. tetani, a Gram-positive spore-forming bacterium predominantly found in the soil. In deep wound infections it occasionally causes spastic paralysis in humans and vertebrate animals, known as tetanus disease, by the secretion of potent neurotoxin, designated tetanus toxin. The toxin blocks the release of neurotransmitters from presynaptic membranes of interneurons of the spinal cord and the brainstem, thus preventing muscle relaxation. Fortunately, this disease is successfully controlled through immunization with tetanus toxoid, a formaldehyde-treated tetanus toxin, but nevertheless, an estimated 400,000 cases still occur each year, mainly of neonatal tetanus. The World Health Organization has stated that neonatal tetanus is the second leading cause of death from vaccine preventable diseases among children worldwide. This minireview focuses on an analysis of the genome sequence of C. tetani E88, a vaccine production strain, which is a toxigenic non-sporulating variant of strain Massachusetts. The genome consists of a 2,799,250 bp chromosome encoding 2618 open reading frames. The tetanus toxin is encoded on a 74,082 kb plasmid, containing 61 genes. Additional virulence-related factors as well as an insight into the metabolic strategy of C. tetani with regard to its pathogenic phenotype will be presented. The information from other clostridial genomes by means of comparative analysis will also be explored.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.