Abstract
Prior studies have neither described methods for crossing a severely stenotic aortic valve (AV) in light of modern imaging modalities (echocardiography, computed tomography, fluoroscopy) nor characterized a successful crossing. This study aimed to fill that gap. Time to cross the valve (TTCV) was measured prospectively in 35 consecutive patients undergoing transcatheter AV replacement and used to define two groups (≤60 seconds or >60 seconds). TTCV was analyzed as a function of 20 imaging variables. The AV was crossed systematically with a pigtail catheter parked in the non-coronary cusp, AL-1 catheter above the AV, and a straight wire for crossing, in 20° left anterior oblique view, as the operator adjusted catheter-to-catheter (CTC; AL-1 to pigtail) and catheter-to-wire (CTW; pigtail to wire) with each failed pass. Mean TTCV was 39.5 ± 59 seconds. Of all the imaging variables, only lower AV peak velocity (3.9 ± 0.69 m/s vs 4.28 ± 0.35 m/s; P<.05) and larger aortic annulus perimeter (77 ± 5.7 mm vs 65 ± 23 mm; P<.05) were significantly different in the <60 group (n = 29; TTCV, 21 ± 12 seconds) vs the >60 group (n = 6; TTCV, 157 ± 52 seconds). The successful pass was characterized by a CTC of 1.67 ± 0.78 cm and CTW of 0.2 ± 0.36 cm. These distances increased in horizontal hearts (CTC and CTW were 0.76 cm) to higher in normally oriented hearts (CTC, 1.63 cm; CTW, 0.5 cm) to even higher in vertical hearts (CTC, 2.9 cm; CTW, 0.56 cm). Although lower peak jet velocity was associated with rapid AV crossing, the major insight from these data is characterization of a successful pass, which can facilitate clinical practice.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have