Abstract
The synthesis of high-performance catalysts for volatile organic compounds (VOCs) degradation under humid conditions is essential for their practical industrial application. Herein, a codoping strategy was adopted to synthesize the N-Co3O4-C catalyst with N, C codoping for low-temperature ethyl acetate (EA) degradation under humid conditions. Results showed that N-Co3O4-C exhibited great catalytic activity (T 90 = 177 °C) and water resistance (5.0 vol% H2O, T 90 = 178 °C) for EA degradation. Characterization results suggested that the C, N codoping weakened the Co-O bond strength, increased surface Co3+ and Oads species, and improved the low-temperature redox ability and the mobility of lattice oxygen species, which boosted the catalytic performance of N-Co3O4-C for EA degradation. Meanwhile, the N-doping-induced oxygen vacancies could interact with water vapor to generate extra active oxygen species, which enhanced the water resistance. Importantly, based on a series of characterization technologies, in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), and theoretical calculations, the synergistic effect of C, N codoping was systematically investigated and elucidated. The C doping induced the increase of surface area and the weakening of Co-O bond strength, which improved EA adsorption and lattice oxygen species activation to dissociate and oxidize EA, forming the key intermediate, acetate acid. N doping enhanced the adsorption and activation of gaseous oxygen species to form active oxygen species, attacking and breaking the C-C bond in acetate acid to accelerate EA deep oxidation, which synergistically facilitated EA degradation.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have