Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) in vitro infection of dermal endothelial cells begins with its binding to host cell surface receptor molecules such as heparan sulfate (HS), integrins (α3β1, αVβ3, and αVβ5), xCT, and EphA2 receptor tyrosine kinase (EphA2R). These initial events initiate dynamic host protein-protein interactions involving a multimolecular complex of receptors, signal molecules (focal adhesion kinase [FAK], Src, phosphatidylinositol 3-kinase [PI3-K], and RhoA-GTPase), adaptors (c-Cbl, CIB1, Crk, p130Cas, and GEF-C3G), actin, and myosin II light chain that lead to virus entry via macropinocytosis. Here we discuss how KSHV hijacks c-Cbl, an E3 ubiquitin ligase, to monoubiquitinate the receptors and actin, which acts like a marker for trafficking (similar to zip codes), resulting in the recruitment of the members of the host endosomal sorting complexes required for transport (ESCRT) Hrs, Tsg101, EAP45, and the CHMP5 and -6 proteins (zip code readers) recognizing the ubiquitinated protein and adaptor machinery to traffic through the different endosomal compartments in the cytoplasm to initiate the macropinocytic process and infection.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have