Abstract
As a new approach of creating the photo-exited electron (e-) and hole (h+) mediation zone for highly selective singlet oxygen (1O2) production, the rod-type graphitic carbon nitride (NCN) has been synthesized from the nitric acid-modified melamine followed by the calcination. The NCN exhibited a higher surface area and surface oxygen adsorption ability than bulk graphitic carbon nitride (BCN). The increment of CO and NHx groups on NCN corresponded to e- and h+ mediation groups, respectively, resulting in higher production of 1O2 than BCN. Moreover, those mediation groups on NCN result in higher recombination efficiency and longer e- decay time. As a result, the optimized NCN-0.5 (derived from 0.5 M of nitric acid-modified melamine) displayed 5.8 times higher kinetic rate constant of atrazine (ATZ) removal under UVA-LED irradiation compared to BCN. This study also evaluated the ATZ degradation pathways and toxicity effect of by-products. In addition, continuous flow experiments using NCN-0.5 showed superior ATZ removal performance with a hybrid concept between a slurry photocatalysis and a continuous stirred tank reactor system using actual effluent obtained from a wastewater treatment plant. Thus, this work provides an insight into the strategy for highly selective 1O2 production and the potential for water purification application.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have