Abstract

AbstractCable-assisted (or tethered) mechanized harvesting has recently been introduced to the Pacific Northwest of the United States, and is rapidly being adopted by the forest industry. However, potential environmental impacts, productivity and cost of the new harvesting systems have not been well-assessed. This study aims to examine the effects of cable assistance on soil compaction, system productivity and cost through a field-based experiment. A harvester-forwarder system was used to thin a harvest unit on dry soils in western Oregon, with and without cable-assistance. We conducted a detailed time study during operations and collected soil measurements before and after machine passes. Machine productivity ranged from 28.75 to 92.36 m3 per scheduled machine hour, with resulting unit costs for untethered and tethered systems ranging from $13.19 to $18.13/m3. Our results showed reduced soil impacts in both extent and degree of soil compaction when cable assistance was employed. The reduced extent of soil impacts is attributed to a reduction in track wander owing to the operative tensions of the tether cable, and the smaller increase in soil density appears to be attributed to combined effects of initially denser soil conditions and reduced shear displacement as a result of cable-assistance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.