Abstract

We have investigated M-C bonds in lanthanide and actinide complexes ML2 (M = Ce, Th, U, Np and Pu; L = C(PPh2NMes)2) using scalar-relativistic theory. The M-C bonds possess typical σ and π bonding character, except for the nearly π-only Th-C bonds. The metal valence electrons significantly reside in the valence d and f orbitals for CeL2, UL2, NpL2 and PuL2, while for ThL2 most electron population is in 6d orbitals. The contribution of 6d orbitals to the An-C bonds decreases and that of 5f orbitals increases across the actinide series. QTAIM (quantum theory of atoms in molecules) and NBO (natural bond orbital) analyses confirm that the M-C bonds possess significant covalent character. This work provides insights into the contributions of d and f valence orbitals to M-C bonding. And inclusion of Np and Pu in this evaluation extends understanding to later actinides.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.