Abstract

This report present the results of natural energy decomposition analysis (NEDA), natural bond orbital (NBO), and quantum theory of atoms in molecules (QTAIM) calculations of three derivatives of biphenyl-1-aza-18-crown-6 ether and their 1:1 complexes with Cd(2+). All calculations used the B3LYP density functional theory in combination with the 6-311G and WTBS basis sets for ligands and Cd(2+) ion, respectively. Ligands 1 and 3 have a single 1-aza-18-crown-6, substituent; ligand 2 has two such substituents. The results show that, in the optimized geometries of the complexes, the distance between N and Cd(2+) is greater than the distance between O and Cd(2+). NBO and QTAIM data confirm these results. There was no stabilization energy or bond critical point for N · · · Cd(2+) in NBO or QTAIM, respectively. Data show that the O · · · Cd(2+) interaction is a kind of closed shell interaction. The trend of the calculated stabilization energy was similar to the experimental data. Different contributions of interaction energies for complex formation were analyzed by NEDA, and the results show that the main component of the interactions is accounted for by polarization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.