Abstract
Food-derived angiotensin-converting enzyme inhibitory peptide (ACEIP) has an effect in supportive therapeutic on hypertension. Bovine serum albumin (BSA) as a model transporter protein to explore the interaction mechanisms with casein-hydrolyzed ACEIP Val-Ala-Pro (VAP) by multi-spectroscopic, biolayer interferometry (BLI), isothermal titration calorimetry (ITC), molecular docking, and molecular dynamics simulations. Multi-spectroscopic analysis showed that the non-covalent complexes formed by VAP and BSA resulted in decreased hydrophobicity and α-helix contents on BSA, revealing the unfolding of the BSA structure. BLI revealed the reversible binding process of BSA to VAP. ITC confirmed that the combination of VAP to BSA was a spontaneous process mainly driven by entropy. Molecular docking and molecular dynamic simulations showed that VAP was primarily bound in site II of BSA by hydrogen bonding, hydrophobic interactions, van der Waals force, and electrostatic force. This study provides a systematic method to reveal the structure–activity relationship of ACEIPs.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.