Abstract

Humic acid (HA) as one class of macromolecular substances plays important roles in mediating environmental behaviors of pollutants in sediments, but its effect on microbial degradation of triclosan (TCS), a common antibacterial drug, remains unclear. In this study, the effects of HA addition with different dosages (0–5%) on TCS degradation in anaerobic sediment slurries and the underlying microbial mechanisms were investigated. The results showed that HA addition significantly accelerated the TCS removal and the maximum removal percentage (30.2%) was observed in the sediment slurry with 5% HA addition. The iron reduction rate, relative abundances of the genera Comamonas, Pseudomonas and Geobacter, and bacterial network complexity in sediment slurry were significantly enhanced due to HA addition. Based on the partial least squares path modeling analysis, the enhancement effect of HA on TCS degradation was mainly explained by Fe(II):Fe(III) ratio with the highest influence on TCS removal (total effect: 0.723), followed by dominant genera abundances (total effect: 0.391), module relative abundance (total effect: 0.272), and network topological features (total effect: 0.263). This finding enhanced our understanding of the role of HA in TCS biodegradation in contaminated sediments for bioremediation purposes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call