Abstract
The chemical structure of lignite plays a fundamental role in microbial degradation, which can be altered to increase gas production. In this study, the structural changes in lignite were analyzed by conducting pretreatment and biomethane gas production experiments using crushing and ball milling processes, respectively. The results revealed that different particle size ranges of lignite considerably influence gas production. The maximum methane yield under both treatments corresponded to a particle size range of 400–500 mesh. The gas production after ball milling was higher than that after crushing, irrespective of particle size. Compared with lignite subjected to crushing, that subjected to ball milling exhibited more oxygen-containing functional groups, less coalification, more disordered structures, and small aromatic ring structures, demonstrating more unstable properties, which are typically favorable to microbial flora for the utilization and degradation of lignite. Additionally, a symbiotic microbial community comprising multiple species was established during the microbial degradation of lignite into biogas. This study provides new insights and a strong scientific foundation for further research on microbial lignite methanation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.