Abstract

The preparation of carbon dots (CDs) from waste fish scales is an attractive and high-value transformation. In this study, fish scales were used as a precursor to prepare CDs, and the effects of hydrothermal and microwave methods on their fluorescence properties and structures were evaluated. The microwave method was more conducive to the self-doping of nitrogen due to rapid and uniform heating. However, the low temperature associated with the microwave method resulted in insufficient dissolution of the organic matter in the fish scales, resulting in incomplete dehydration and condensation and the formation of nanosheet-like CDs, whose emission behavior had no significant correlation with excitation. Although the CDs prepared using the conventional hydrothermal method showed lower nitrogen doping, the relative pyrrolic nitrogen content was higher, which was beneficial in improving their quantum yield. Additionally, the controllable high temperature and sealed environment used in the conventional hydrothermal method promoted dehydration and condensation of the organic matter in the fish scales to form CDs with a higher degree of carbonization, uniform size, and higher C = O/COOH content. CDs prepared using the conventional hydrothermal method exhibited higher quantum yields and excitation wavelength-dependent emission behavior.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call