Abstract

Nitrated phospholipids have been recently identified in biological systems and showed to display anti-oxidant and anti-inflammatory potential in models of inflammation in vitro. Here, we have explored the effects of nitrated 1-palmitoyl-2-oleyl-phosphatidyl choline (NO2-POPC) in cellular models. We have observed that NO2-POPC, but not POPC, induces cellular changes consisting in cytoskeletal rearrangement and cell shrinking, and ultimately, loss of cell adhesion or impaired cell attachment. NO2-POPC releases NO in vitro and induces accumulation of NO in cells. Nevertheless, the effects of NO2-POPC are not superimposable with those of NO donors, which points to distinctive mechanisms of action. Notably, they show a stronger parallelism, although not complete overlap, with the effects of nitrated fatty acids. Interestingly, redistribution of vimentin by NO2-POPC is attenuated in a C328S mutant, thus indicating that this residue may be a target for direct or indirect modification in NO2-POPC-treated cells. Additionally, NO2-POPC interacts with several typical lipoxidation targets in vitro, including vimentin and PPARγ constructs, likely through cysteine residues. Therefore, nitrated phospholipids emerge as potential novel electrophilic lipid mediators with selective actions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.